International Journal of Modern Research in Engineering and Technology(IJMRET) www.ijmret.org Volume7 Issue6; June 2022; PP 1-9

AN ENTIRE FUNCTION SHARING A LINEAR POLYNOMIAL WITH ITS LINEAR DIFFERENTIAL POLYNOMIALS.

IMRUL KAISH AND GOUTAM KUMAR GHOSH

ABSTRACT. In this paper we study the uniqueness of an entire function when it shares a linear polynomial with its linear differential polynomials.

1. INTRODUCTION, DEFINITIONS AND RESULTS

Let f be a noncostant meromorphic function defined in the open complex plane $\mathbb C$. The integrated counting function of poles of f is defined by

$$N(r,\infty;f) = \int_0^r \frac{n(t,\infty;f) - n(0,\infty;f)}{t} dt + n(0,\infty;f) \log r.$$

where $n(t, \infty; f)$ be the number of poles of f lying in $|z| \le r$, the poles are counted according to their multiplicities and $n(0, \infty; f)$ be the multiplicity of pole of f at origin.

For a polynomial a = a(z), $N(r, a; f)(\overline{N}(r, a; f))$ be the integrated counting function (reduced counting function) of zeros of f - a in $|z| \le r$.

Let $A \subset \mathbb{C}$, we denote by $n_A(r, a; f)$ the number of zeros of f - a, counted with multiplicities, that lie in $\{z:|z|\leq r\}\cap A$. The corresponding integrated counting function $N_A(r,a;f)$ is defined by

$$N_A(r, a; f) = \int_0^r \frac{n_A(t, a; f) - n_A(0, a; f)}{t} dt + n_A(0, a; f) \log r.$$

We also denote by $\overline{N}_A(r,a;f)$ the reduced counting functions of those zeros of f-a that lie in $\{z: |z| \le r\} \cap A$

Clearly if $A = \mathbb{C}$, then $N_A(r, a; f) = N(r, a; f)$ and $\overline{N}_A(r, a; f) = \overline{N}(r, a; f)$.

We denote by E(a, f) the set of zeros of f - a counted with multiplicities and by $\overline{E}(a, f)$ the set of distinct zeros of f - a.

For the standard definitions and notations of the value distribution theory authors suggest to see [1] and [8]

The investigation of uniqueness of an entire function sharing certain values with its derivatives was initiated by L. A. Rubel and C. C. Yang [7] in 1977. They proved the following result.

Theorem A. [7]. Let f be a non-constant entire function. If $E(a;f)=E(a;f^{(1)})$ and $E(b;f)=E(a;f^{(1)})$ $E(b; f^{(1)})$, for distinct finite complex numbers a and b, then $f \equiv f^{(1)}$

In 1979 E.Mues and N.Steinmetz [6] took up the case of IM sharing in the place of CM sharing of values and proved the following theorem.

Theorem B. [6]. Let f be a non-constant entire function and a. b be two distinct finite complex values and . If $\overline{E}(a; f) = \overline{E}(a; f^{(1)})$ and $\overline{E}(b; f) = \overline{E}(b; f^{(1)})$, then $f \equiv f^{(1)}$.

The uniqueness of an entire function sharing a nonzero finite value with its first two derivatives was considered by G. Jank, E. Mues and L. Volkmann [2] in 1986. The following is their result

Theorem C. [2]. Let f be a nonconstant entire function and a be a nonzero finite value. If $\overline{E}(a;f) =$ $\overline{E}(a; f^{(1)}) \subset \overline{E}(a; f^{(2)})$. then $f \equiv f^{(1)}$.

¹www.ijmret.org ISSN:2456-5628 Pagel

²⁰¹⁰ Mathematics Subject Classification. 30D35.

Key words and phrases. Entire function, differential polynomial, sharing